skip to main content


Search for: All records

Creators/Authors contains: "Urry, Claudia Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the X-ray variability properties of Seyfert 1 Galaxies belonging to the BAT AGN Spectroscopic Survey (BASS). The sample includes 151 unobscured (NH < 1022 cm−2) AGNs observed with XMM–Newton for a total exposure time of ∼27 ms, representing the deepest variability study done so far with high signal-to-noise XMM–Newton observations, almost doubling the number of observations analysed in previous works. We constrain the relation between the normalized excess variance and the 2–10 keV AGN luminosities, black hole masses, and Eddington ratios. We find a highly significant correlation between $\sigma _{\rm NXS}^2$ and MBH , with a scatter of ∼0.85 dex. For sources with high L2–10 this correlation has a lower normalization, confirming that more luminous (higher mass) AGNs show less variability. We explored the $\sigma _{\rm NXS}^2$ versus MBH relation for the sub-sample of sources with MBH estimated via the ‘reverberation mapping’ technique, finding a tighter anticorrelation, with a scatter of ∼0.65 dex. We examine how the $\sigma _{\rm NXS}^2$ changes with energy by studying the relation between the variability in the hard (3–10 keV) and the soft (0.2–1 keV)/medium (1–3 keV) energy bands, finding that the spectral components dominating the hard energy band are more variable than the spectral components dominating in softer energy bands, on time-scales shorter than 10 ks.

     
    more » « less
  2. Abstract We present an analysis of 10 ks snapshot Chandra observations of 12 shocked post-starburst galaxies, which provide a window into the unresolved question of active galactic nuclei (AGN) activity in post-starburst galaxies and its role in the transition of galaxies from active star formation to quiescence. While seven of the 12 galaxies have statistically significant detections (with two more marginal detections), the brightest only obtained 10 photons. Given the wide variety of hardness ratios in this sample, we chose to pursue a forward-modeling approach to constrain the intrinsic luminosity and obscuration of these galaxies, rather than stacking. We constrain the intrinsic luminosity of obscured power laws based on the total number of counts and spectral shape, itself mostly set by the obscuration, with hardness ratios consistent with the data. We also tested thermal models. While all the galaxies have power-law models consistent with their observations, a third of the galaxies are better fit as an obscured power law and another third are better fit as thermal emission. If these post-starburst galaxies, early in their transition, contain AGNs, then these are mostly confined to lower obscuration ( N H ≤ 10 23 cm −2 ) and lower luminosity ( L 2−10 keV ≤ 10 42 erg s −1 ). Two galaxies, however, are clearly best fit as significantly obscured AGNs. At least half of this sample shows evidence of at least low-luminosity AGN activity, though none could radiatively drive out the remaining molecular gas reservoirs. Therefore, these AGNs are more likely along for the ride, having been fed gas by the same processes driving the transition. 
    more » « less